lagC-null and gbf-null cells define key steps in the morphogenesis of Dictyostelium mounds.
نویسندگان
چکیده
The transition to multicellularity is a key feature of the Dictyostelium life cycle, and two genes, gbf and lagC, are known to play pivotal roles in regulating this developmental switch. lagC-null and gbf-null cells fail to induce cell-type-specific genes ordinarily expressed during multicellular development. The null mutants also share a similar morphological phenotype: mutant cells repeatedly aggregate to form a loose mound, disperse, and reform a mound, rather than proceeding to form a tip. To characterize defects in morphogenesis in these mutants, we examined cell motion in the mutant mounds. In analogy with the failed transition in gene expression, we found that lagC-null and gbf-null mounds failed to make a morphogenetic transition from random to rotational motion normally observed in the parent strain. One reason for this was the inability of the mutant mounds to establish a single, dominant signaling-wave center. This defect of lagC-null or gbf-null cells could be overcome by the addition of adenosine, which alters cAMP signaling, but then even in the presence of apparently normal signaling waves, cell motility was still aberrant. This motility defect, as well as the signaling-wave defect, could be overcome in lagC-null cells by overexpression of GBF, suggesting that lagC is dispensable if GBF protein levels are high enough. This set of morphogenetic defects that we have observed helps define key steps in mound morphogenesis. These include the establishment of a dominant signaling-wave center and the capacity of cells to move directionally within the cell mass in response to guidance cues.
منابع مشابه
Cloning and characterization of the G-box binding factor, an essential component of the developmental switch between early and late development in Dictyostelium.
During Dictyostelium development, the cAMP-regulated induction of cell-type-specific late genes marks a developmental switch from the initial formation of the multicellular organism to the differentiation of the various cell types that mediate morphogenesis and eventually give rise to the mature fruting body. The G-box binding factor (GBF) is a developmentally regulated Dictyostelium transcript...
متن کاملFunctional and regulatory analysis of the dictyostelium G-box binding factor.
The Dictyostelium discoidium G-box binding factor (GBF) is required for the induction of known postaggregative and cell-type-specific genes. gbf-null cells undergo developmental arrest at the loose-mound stage due to the absence of GBF-targeted gene transcription. GBF-mediated gene expression is activated by stimulation of cell-surface, seven-span cAMP receptors, but this activation is independ...
متن کاملSerpentine cAMP receptors may act through a G protein-independent pathway to induce postaggregative development in dictyostelium
The transcription factor G box-binding factor (GBF) is required for the developmental switch between aggregative and postaggregative gene expression, cell-type differentiation, and morphogenesis. We show that constitutive expression of GBF allows ectopic expression of postaggregative genes, but only in response to exogenous cAMP. GBF activation requires the serpentine cAMP receptors required fo...
متن کاملThree-dimensional in vivo analysis of Dictyostelium mounds reveals directional sorting of prestalk cells and defines a role for the myosin II regulatory light chain in prestalk cell sorting and tip protrusion.
During cell sorting in Dictyostelium, we observed that GFP-tagged prestalk cells (ecmAO-expressing cells) moved independently and directionally to form a cluster. This is consistent with a chemotaxis model for cell sorting (and not differential adhesion) in which a long-range signal attracts many of the prestalk cells to the site of cluster formation. Surprisingly, the ecmAO prestalk cluster th...
متن کاملRac regulation of chemotaxis and morphogenesis in Dictyostelium.
Chemotaxis requires localized F-actin polymerization at the site of the plasma membrane closest to the chemoattractant source, a process controlled by Rac/Cdc42 GTPases. We identify Dictyostelium RacB as an essential mediator of this process. RacB is activated upon chemoattractant stimulation, exhibiting biphasic kinetics paralleling F-actin polymerization. racB null cells have strong chemotaxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 200 1 شماره
صفحات -
تاریخ انتشار 1998